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Abstract. In the present paper we repolt the results of the Monte Carlo simulation of the 
time-of-flight experiment for variable-range hopping transport in lhin dielectric layers, which 
we spatially inhomogeneous on the macroscopic scale (i.e. on a scale compamble with the layer 
thickness). In paticular. the total density of hopping centres (with Gaussian disfributioion in 
energy) is assumed to change exponentially as a function of the distance from the contacls. The 
results of simulations performed for various system dilutions. various widths of the Gaussian 
distribution in energy, and various degrees of the layer Spatial non-uniformity are discussed. 

1. Introduction 

One of the most widely used methods for determination of the microscopic transport 
parameters, such as the band mobility, the concentration of traps, the trap energy distribution 
and the trapping cross section, is the analysis of results obtained in the classical time- 
of-flight (TOF) experiment (Scher and Montroll 1975, Schmidlin 1977a,b, Arkhipov and 
Rudenko 1982, Rudenko and Arkhipov 1982a,b). The classical theory of the TOF experiment 
describes transient currents in thin layers, which are assumed to be spatially homogeneous 
on the macroscopic scale. Having at our disposal well developed theoretical tools such as 
those described by Marshall (1983a), Marshall and Main (1983), Marshall et a1 (1985), 
Weissmiiller (1985), Muller-Horsche e ta /  (1987), Seynhaeve etal (1988) and Di Marco er 
al (1989), one can extensively analyse the measured transients. Experimentally, however, 
it is very difficult to prepare an exactly uniform system. A number of phenomena introduce 
macroscopic-scale variations in the total density of hopping centres over the layer thickness 
(see, e.g., Kao and Hwang (1981, p 150) and SamoC and Zboiriski (1978)). Thus, the 
straightforward application of the theory developed for spatially uniform layers cannot 
be fully reliable. For the multiple-trapping transport mechanism, the influence of spatial 
inhomogeneity in the trap distribution on the transient currents, measured in the constant- 
temperature TOF experiment, as well as in the thermally stimulated TOF experiment, has 
been investigated by Rybicki and Chybicki (1988, 1989), Rybicki eral (1990, 1991b) and 
Tomaszewicz e f  a1 (1990). and some simple formulae for the determination, or at least the 
estimation, of the spatial distribution of multiple-trapping centres have been proposed. 
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The TOF experiment is obviously not limited only to the multiple-trapping transport 
mechanism (band transport being interrupted by trapping acts), and transient currents are 
intensively studied also in materials, which reveal a hopping transport mechanism (jumps 
between localized states) (see, e.g., Bissler et al (1982), Emoto and Kotani (1983), Bassler 
(1984), Schein et a1 (1986), Yuh and Stolka (1988) and Abkowitz et al (1989)). The 
measurement interpretation for the hopping transport mechanism, however, is much more 
difficult than in the case of multiple-trapping transport. Computer experiments, and in 
particular Monte Carlo simulations, are often performed in order to elucidate certain features 
of the hopping transport in materials characterized by diagonal o r h d  off-diagonal disorder 
(see, e.g., Marshall (1978, 1981, 1983b), Marshall and Sharp (1980), Adler and Silver 
(1982), Ries and Bissler (1987). Pautmeier et a1 (1989) and Richert eta1 (1989)). 

The shape of a current signal in the TOF experiment depends in a complicated way 
on both energy and positional disorder. Each individual hop depends on the local random 
environment of a given centre. The TOF currents will also depend strongly on variations 
in the centre parameters on a macroscopic scale (over distances comparable with the layer 
thickness). In particular, because of a very strong (exponential) dependence of hopping 
probabilities on the separation between hopping centres, the transient currents measured in 
the TOF experiment not only should depend markedly on the fluctuations in the hopping 
centre density on the microscopic scale (of the order of several hop lengths) but also 
should reveal a pronounced sensitivity to the macroscopic-scale changes in the total centre 
concentration over the specimen thickness. As far as the nearest-neighbour hopping (r- 
hopping) transport is concerned, the influence of the macroscopic spatial variation in the 
total density of hopping centres on the TOF transient currents has been discussed to some 
extent by Rybicki ef al (1992). In the present paper we deal with the influence of a similar 
spatial inhomogeneity of the centre distribution on the TOF transient currents in the case of 
the variable-range hopping (r-&-hopping) transport mechanism (preliminary results given 
by Rybicki et al (1991a)). In section 2 we describe briefly the Monte Carlo simulation 
algorithm that we have applied. The simulation results showing the dependence of the TOF 
transient currents on various model spatial distributions of the total density N ( x )  of hopping 
centres possessing a Gaussian distribution in energy are presented and discussed in section 
3. Section 4 contains concluding remarks. 

2. Simulation algorithm 

We consider a thin layer of thickness L placed between two planar contacts (at x = 0 and 
x = L,  respectively), with an x-dependent total density of hopping centres. At t = 0 an 
infinitesimally thin sheet of carriers is generated on the left contact ( x  = 0). The applied 
external electric field E enforces carrier motion towards the x = L contact. The transport 
mechanism to be considered is r-E hopping, i.e. hopping between centres distributed at 
random in energy E according to a given distribution f ( E ) ,  and at random in space, with 
a total concentration N o S f x ) ,  where S ( x )  is a rather slowly varying function of x ,  with 
S(x = 0) of the order of unity. This means that we consider continuous changes (in x )  
of the average centre concentration, which obey the following condition: the distance over 
which the shape function S changes markedly is much greater than the average inter-centre 
distance. Thus the local environment of the centre located at xi may be viewed as a region 
of random spatial distribution of hopping centres with well defined average density NoS(xi). 
The energy distribution of centres f ( E )  is assumed to be the normal Gaussian distribution 
of standard deviation CT. 
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By writing ?(E)  and S ( x )  we wish to point out that the energy distribution of centres 
is x independent, and the spatial dishibution of centres of any energy E is the same. This 
means that we assume a relatively simple but, we think, a sufficiently wide class of centre 
distributions N ( x ,  E )  in the factorized form 

N ( x , E j  = N o S ( x j f ( E ) .  ( 1 1  

The transient currents were calculated from the time and spatial evolution of the injected 
carrier packet n ( x ,  f) during its motion towards x = L, according to the expression 

(see, e.g., Leal Ferreira 1977), where j ( t )  is the particle current per carrier, no is the number 
of injected carriers, The applied increment of log,,(t) was equal to 0.1 or 0.05. The carrier 
packets n ( x ,  t )  were obtained by averaging the random walks of 10' individual carriers. 

The random walk of each individual carrier started at x = 0 and f = 0, finished on 
arriving at the collecting electrode at x = L and was realized numerically as follow3. 
Let a carrier remain (at a given instant of time) in the centre located at distance x i  from 
the injecting contact. The neighbouring centres are assumed to be unoccupied (which 
corresponds to a low injection limit). The total centre concentration at xi is equal to 
NoS(x i ) .  The neighbouring centres of xi are generated at random in space, with an average 
concentration NoS(xi)  (as described by Rybicki et a1 (1992)), and at random in energy, 
according to the distribution f(E). The neighbourhood of the centre at xi is chosen as a 
sphere containing a given number n of centres, i.e. the radius R ( x )  of the local random 
environment of the centre at xi is given by the relation $rN0S(x i )R3(x i )  = n + 1. It has 
been checked numerically that the dependence of transient currents on the size R ( x )  of each 
local environment becomes saturated for n 36 for the spatial distributions that we dealt 
with. Thus n = 36 has been chosen arbitrarily for all simulations that we present below. 
After a hop from the centre at xi to one of the neighbouring centres (at distance xi from the 
contact) is performed, a new random environment of the centre at xj is generated according 
to the local average total centre density N0S(xi) ,  and the same energy distribution f(E). If 
a hop from the centre at xi near the plane x = 0 to the centre with x, < 0 occurs, the carrier 
position is set to 0. The random walk of each carrier finishes when a hop from xt < L to 
xj > L is encountered for the first time. 

Let us consider a realization of an individual hop from a given occupied centre, at 70, to 
one of the neighbouring empty centres, located at ij, i = 1, . . . , n. The probability poi of 
a hop from the centre at FO to the ith neighbour at 7, is (see, e.g., Ries and B&sler (1987)) 

poi = 
i = I  

(3) 

where the jump rate voi is given by 

wexp(-2alFo -FiI)exp(-AUoi/kT) AUoi > 0 
(4) 1 uexp(-h)fo -?(I) AUoi 6 0 

voi = 

and 

AUoi = Ci - Eo - qE(xi  - X O ) .  (5) 



5030 J Rybicki et a1 

In equations (3)-(3, a is the reciprocal Bohr radius, &O and &, are the energies of the 
actually occupied centre and the ith neighbouring unoccupied centre, respectively, E is the 
applied external field, U is the frequency factor and q is the elementary charge. According 
to the probabilities poi (equation (3)), a corresponding length in random-number space is 
given to each site in the environment of the site at Fo. A random number from the uniform 
distribution serves then to select a site j (at F j ) ,  into which the carrier remaining at FO jumps. 
The time for the jump is given by 

‘Oj = ( I / ~ v o r ) X  

where X is a random number from an exponential distribution (Schonherr etal 1981). The 
procedure is then repeated for a new random environment generated as a neighbourhood of 
rj . 

3. Simulation results 

Simulations have been performed for systems of various dilutions, various standard 
deviations of the Gaussian distributions of the hopping centre energies and various degrees 
of spatial inhomogeneity of centre total density, always for S E N ~ - ” ~ / ~ T  = 1.0 and 
L = 150N0-1/3 (as results from the construction of the simulation algorithm, in the directions 
perpendicular to E the computer sample is not limited in any way), Prior to presenting the 
influence of the spatial macroscopic-scale inhomogeneity of the total centre concentration 
on the TOP transient currents, we shall show separately the pure effect of increasing the 
system dilution and increasing the width of the energy distribution of centres, assuming the 
total hopping centre density to be constant over the layer thickness. 

In figure 1 we show several transient currents calculated from (2) for an x-independent 
(constant over the layer thickness) average centre density for an extremely narrow energy 
spread of centres, i.e. for the limiting case of U = 0. which corresponds to nearest-neighbour 
hopping ( r  hopping). The parameter being changed here is the system dilution a‘, where 
a‘ = N;l i3 / r8  and r~ is the Bohr radius of the localized state. Figure 2 shows histograms 
of the total numbers of jumps performed by the carriers during their walk from x = 0 to 
x = L. As is seen, dispersion of the total numbers of hops increases rapidly with increasing 
dilution of the system, in accordance with increasing dispersive character of the transients 
in figure I .  The slopes of the final current decay decrease from about -6 to -2 in the 
range of a’ from 3.0 to 8.0. 

The pure effect of increasing the width d of the Gaussian distribution of site energies is 
shown in figure 3, where the system dilution is kept constant (a’ = 5 ) ,  and the layer has a 
constant x-independent average total centre density. On increase in the energy distribution 
width U, the transients become more dispersive, in a similar way as occurred for increasing 
dilution a‘. With increasing a‘, however, the slopes for times greater than the effective 
TOF change (in particular decrease), whereas in the case of increasing U they remain 
approximately constant, only weakly decreasing with increasing U (from -2.25 to -1.75 
for U in the range from 0 to 5.0). The histograms of the total numbers of hops performed 
during the walk from x = 0 to x = L (figure 4) show almost the same dispersion for all 
values of U .  One can also see that a wider energy distribution of the centres lowers the 
average number of hops necessary to reach x = L.  
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Figure 1. Dependence of r-&-hopping transient 
currents for o = 0 against spatially uniform average 
centre concentration on the system dilution U': curve a, 
0' = 3.0: curve b. U' = 5.0: cume c. U' = 8.0. 

Figure 2 Histograms of the total numbers of jumps 
performed by the caniers during their walk from x = 0 
to x = L (a) e' = 3.0, (b) U' = 5.0, (c )  U = 8.0. 
The heights of the velticd lines are propodonal to the 
number of caniers that performed a given number of 
hops. The histogram resolution is 100 hops. o = 0, 
the average hopping centre density is uniform over the 
l a w  thickness. 
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Figure 3. Dependence of r-Chopping transient Figure 4. Histograms of the total numbers of jumps 
current'. for dilution 0' = 5.0 against spacially uniform performed by the carriers during their walk F" z = 0 
average total centre concentration on t h e  standard to x = L :  (a) o = I.OkT; (b)  o = 3.0kT; (c)  o = 
deviation o of the Gaussian energy distribution of 5.0kT. The heights of the vertical lines m propotiional 
centres: curve a, o = 0.0; curve b. o = 3.0kT; c w e  c, to the number of carriers that performed a given number 
o = 5.0kT. of hops. The histognm resolution is IO0 hops. The 

system dilution e' = 5.0; the average hopping centre 
density is unifmm over the layer thickness. 

In order to investigate qualitatively the influence of the macroscopic inhomogeneity of 
the r-E-hopping centre spatial distribution, we performed our simulations for exponential 
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variations in the total centre concentration as a function of x. In particular, the results 
presented below in figures 5-10 were obtained for 

S(x)  = exp(-x/D) (7) 

and 

S(x) = exp[-(L -x)/D] (8) 

where D is a concentration decay (increase) parameter. For distribution (7) the hopping 
carriers moving towards x = L enter the region of lower centre density and thus are 
slowed down. For distribution (8), the increasing centre density makes the carrier motion 
easier. Figure 5 shows spatial distributions n ( x ,  t )  of hopping caniers at the same time 
(ut = IO8) after injection into the layer of given a‘ and U, for the total centre concentration 
increasing and decreasing e* times over the layer thickness, and also for a homogeneous 
spatial distribution. For distribution (7) we see a well developed canier packet, whereas 
for (8) the carriers still remain in the immediate proximity of the injecting contact. For a 
homogeneous spatial centre distribution, the considered time vt = 108 is greater than the 
effective TOF, and only a few carriers (note the logarithmic scale on the vertical axis) remain 
within the sample and distributed almost uniformly in space. 

Figures 6 and 7 show the influence of the degree of the layer spatial inhomogeneity 
for a’ = 3 (relatively dense system), figures 8 and 9 show the same influence for a’ = 5, 
and figure 10 for a’ = 8 (relatively diluted system). Let us consider first the case of the 
decreasing (in x) total concentration of hopping centres (7). The initial value of the current 
obviously does not depend on the ratio LID, because the centre concentration at x = 0 
always remains the same. With increasing degree of inhomogeneity LID, the slopes before 
the effective TOF increase, whereas after the effective TOF they decrease. The U dependence 
of the latter becomes weaker (cf curves d in figures 6 and 7). For a high degree of spatial 
non-uniformity (LID rr 5.0) the effective TOF is difficult to determine, the whole transient 
being the current decay of slope close to -1 independently of U. Thus the increase in 
LID acts qualitatively as the increase in the system dilution, and the overall shape of the 
transient is governed by the minimum-density region. 

For the increasing (in x) total centre density (8) the effect of spatial inhomogeneity is 
more interesting. Here the initial current values depend on the ratio LID. The characteristic 
feature is the occurrence of current maxima immediately before the final current decay for 
relatively dense systems, with a rather narrow energy distribution of centres and mild spatial 
non-uniformity of the layer. The current peaks become the current plateaux for a sufficiently 
wide energy distribution of centres (cf. curves c of figures 6 and 7, and figures 8 and 9), 
and/or for a sufficiently diluted system (cf. curves c of figures 6, 8 and 10). For more 
inhomogeneous samples (LID = 5.0 curves) only low-cr’ and/or low-U transients reveal a 
plateau before the effective TOF; for higher a‘ and/or n a structureless current decay (with 
a slope of the order of - 1) is observed. 

Comparison of the curves for the same LID ratio and spatial centre distributions (7) 
and (8) (and the same 01’ and U )  shows a marked polarity dependence of transient currents. 
Note that the slope of the final current decay does not depend on the polarity (the final parts 
of curves b and c and curves d and e in figures 6-10 are parallel). 

Figures 11 and 12 show several transients calculated for the layers with enhanced centre 
density at both contacts, i.e. for the centre spatial distribution of the form 

S(x) = exp(-x/D]) + exp[-(L - x)/Dd. (9) 
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Figure 5. Spatial distributions of the carrier packets 
at the same time after injection (ut = los) for 
different spatial distributions of hopping centres (a.u.. 
arbitrary uNts): 0, LID = 0.0 (uniform distribution); 
0. distribution 0). LID = 2.0; x, distribution (S), 
L I D  = 2.0. In all cases, a' = 5.0 and U = 1.0kT. 

log Id t i  

Figure 7. r4-hopping transient currents for a' = 
3.0 and LT = 5.0kT for the exponential spatial 
centre distributions (7) and (8): c w e  a, LID = 
0 (x-independent average total cenlre concenmtion); 
curve b. distribution (7). LID = 2.0, curye c, 
distribution (S), LID = 2.0; C U N ~  d, distribution (71, 
LID = 5.0; curve e, distribution (8). LID = 5.0. 
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Figure 6. r-5-hopping uansient currents for a' = 
3.0 and U = I.OkT for the exponential spatial 
centre distributions (7) and (8): curve a, L I D  = 
0 (x-independent average total centre concentmion); 
curve b. distribution (7). L / D  = 2.0: curve c, 
distribution (8). LID = 2.0; curve d, distribution (7). 
LJD = 5.0; curve e. distribution (8), LID = 5.0. 
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Figure 8. +&-hopping transient currents for 0' = 
5.0 and a = I.0kT for the exponential spatid 
centre distributions (7) and (8): curve a, L I D  = 
0 (x-independent average total centre concentration); 
curve b, distribution (71, LID = 2.0; curve c, 
distribution (81, LID = 2.0; curve d, distribution (7). 
LID = 5.0; curve e, distribution (8). LID = 5.0. 

The curves in figure 11 have been calculated for a rather strongly non-uniform dense system 
( L I D ,  = L / D z  = 5.0; 01' = 3.0). for various widths U of the energy distribution of centres. 
One can see that the expected current minimum, related to the low centre concentration in the 
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Figure 9. r4-hopping tnnsient currents for d = 
5.0 and U = 5.0kT for the exponential spatial 
centre distributions (7) and (8):  e w e  a. LID = 
0 (x-independent average lotal centre concentration); 
curve b, distribution (7), LID = 2.0; curve c, 
distribution (8). LID = 2.0; curved, distribution (7). 
LID = 5.0: curve e, distribution (8). L I D  = 5.0. 
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Figure 10. r-E-hopping transient cumnts for (I' = 
8.0 and a = I.OkT for the exponential spatial 
centre distributions (7) and (8): curve a, LID = 
0 (x-independent average total centre concentration); 
curve b, distribution (71, LJD = 2.0; curve c, 
distribution (8). LID = 2.0, c w e  d, distribution (7). 
LID = 5.0; curve e, distribulion (8). LID = 5.0. 

middle of the layer thickness, is hardly evidenced in the case of nearest-neighbour hopping 
(curve a) and completely disappears for wider energy distributions of centres. Figure 12 
shows a very weak dependence of the TOF transient currents on the details of the spatial 
distribution, and in particular on the layer polarity, in the case of a = 5.0. For a very 
narrow energy distribution the effect is more pronounced. 
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Figure 11. r-&-hopping transient currents for the Figure 12. r4-hopping tnnsient cumnts for the 
spacial centre distribution (9): cuwe a, U = 0. Cwe b, spacial cenm distribution (9): 0, LID1 = LID2 = 
a = 3.0kT; curve c, U = 5.0kT. In all the cases, 2.0; A, LIDI = LID2 = 5.0, .. L I D ,  = 2.0. 
LJDI = L / &  = 5.0 and a' = 3.0. L/D2 = 5.0, x ,  LID1 = 5.0, LID2 = 2.0. In all 

cases, 01' = 3.0 and a = 5.0kT. 
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4. Concluding remarks 

r-€-hopping transient currents measured in the classical TOF experiment are highly sensitive 
to spatial macroscopic-scale variations in the total centre concentration, as has been shown 
above for the special case of a Gaussian distribution of the centre energies. The detailed 
shape of the transients depends in a complicated way on the system dilution, the width of the 
energy distribution of the cenfxs and spatial variations in the total centre concentration. It 
seems that, even having at our disposal analytical expressions for the currents, it wodd be 
very difficult to determine reliably the spatial centre distribution from the measurement 
results obtainable with the TOF experiment. However, the existence of spatial non- 
uniformity of the layer could be recognized by observation of the qualitative changes in the 
current shape with increasing temperature, which leads to lower dispersion, and thus more 
pronounced characteristic features of the x-dependent total centre density, as the polarity 
dependence, or the presence of the current maxima or plateaux. 
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